Вариант № 2

Централизованный экзамен по математике, 2023

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 3:30:00
1
Задание № 31
i

Среди зна­че­ний пе­ре­мен­ной x, рав­ных 10; 11; 12; 15; 14, ука­жи­те то, при ко­то­ром дробь  дробь: чис­ли­тель: x, зна­ме­на­тель: 11 конец дроби яв­ля­ет­ся пра­виль­ной.



2
Задание № 32
i

Ука­жи­те номер вы­ра­же­ния, ко­то­рое яв­ля­ет­ся сум­мой двух по­сле­до­ва­тель­ных на­ту­раль­ных чисел, мень­шее из ко­то­рых равно a.



3
Задание № 33
i

Если MK  — диа­метр, O  — центр окруж­но­сти, \angle N O K=116 гра­ду­сов (см. рис.), то гра­дус­ная мера впи­сан­но­го угла NMK равна:



4
Задание № 34
i

Среди чисел  ко­рень из 5 ;  ко­рень из 6 ;  ко­рень из: на­ча­ло ар­гу­мен­та: 23 конец ар­гу­мен­та ;  ко­рень из: на­ча­ло ар­гу­мен­та: 29 конец ар­гу­мен­та ;  ко­рень из: на­ча­ло ар­гу­мен­та: 37 конец ар­гу­мен­та ука­жи­те то, ко­то­рое яв­ля­ет­ся ре­ше­ни­ем си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний x боль­ше или равно 5,x мень­ше 6. конец си­сте­мы .



5
Задание № 35
i

Среди зна­че­ний ар­гу­мен­та x, рав­ных  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ;  дробь: чис­ли­тель: 1, зна­ме­на­тель: 169 конец дроби ;  дробь: чис­ли­тель: 1, зна­ме­на­тель: 121 конец дроби ;  дробь: чис­ли­тель: 1, зна­ме­на­тель: 144 конец дроби ;  дробь: чис­ли­тель: 1, зна­ме­на­тель: 24 конец дроби , ука­жи­те то, при ко­то­ром зна­че­ние функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из x мень­ше  дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби .



6
Задание № 36
i

Ука­жи­те но­ме­ра функ­ций, для ко­то­рых зна­че­ние ар­гу­мен­та, рав­ное −8, яв­ля­ет­ся нулем функ­ции.



7
Задание № 37
i

Ве­ло­си­пе­дист за 6 ч про­ехал 58 км. За какое время (в ми­ну­тах) ве­ло­си­пе­дист пре­одо­ле­ет в пол­то­ра раза боль­ший путь, если будет дви­гать­ся с той же ско­ро­стью?



8
Задание № 38
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния |a минус 11| минус | минус 4| при a боль­ше 11 имеет вид:



9
Задание № 39
i

ABCDA1B1C1D1  — пря­мо­уголь­ный па­рал­ле­ле­пи­пед, у ко­то­ро­го AB  =  9, BC  =  12, BB_1 = 2 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та . Най­ди­те длину про­стран­ствен­ной ло­ма­ной ADBC1 (см. рис.).



10
Задание № 40
i

Ука­жи­те но­ме­ра пар, ко­то­рые со­сто­ят из рав­но­силь­ных не­ра­венств.



11
Задание № 41
i

Вы­бе­ри­те вер­ные утвер­жде­ния:

 

1)  число 470 крат­но числу 5;

2)  число 733 крат­но числу 3;

3)  число 324 крат­но числу 4;

4)  число 254 крат­но числу 6;

5)  число 825 крат­но числу 10;

6)  число 828 крат­но числу 9.

 

Ответ за­пи­ши­те циф­ра­ми (по­ря­док за­пи­си цифр не имеет зна­че­ния). На­при­мер, 125.


Ответ:

12
Задание № 42
i

На диа­грам­ме по­ка­за­но ко­ли­че­ство всех по­ку­па­те­лей ин­тер­нет-ма­га­зи­на (П) и ко­ли­че­ство по­ку­па­те­лей, со­вер­шив­ших более одной по­куп­ки (ПБ), за пе­ри­од шесть ме­ся­цев (с июля по де­кабрь). Уста­но­ви­те со­от­вет­ствие между во­про­са­ми А−В и от­ве­та­ми 1−6.

Во­прос

A)  В каком ме­ся­це ко­ли­че­ство всех по­ку­па­те­лей было наи­боль­шим?

Б)  В каком ме­ся­це ко­ли­че­ство по­ку­па­те­лей, со­вер­шив­ших более одной по­куп­ки, было 160?

В)  В каком ме­ся­це ко­ли­че­ство по­ку­па­те­лей, со­вер­шив­ших более одной по­куп­ки, со­ста­ви­ло 20% от ко­ли­че­ства всех по­ку­па­те­лей в этом ме­ся­це?

Ответ

1)  Июль

2)  Ав­густ

3)  Сен­тябрь

4)  Ок­тябрь

5)  Но­ябрь

6)  Де­кабрь

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер, А1Б1В4.


Ответ:

13
Задание № 43
i

Дана пря­мая тре­уголь­ная приз­ма ABCA1B1C1. Точки M и N яв­ля­ют­ся се­ре­ди­на­ми ребер A1B1 и BB1 со­от­вет­ствен­но, точка K  — се­ре­ди­на диа­го­на­ли AC1 грани AA1C1C (см. рис.). Вы­бе­ри­те вер­ные утвер­жде­ния:

 

1)  пря­мая MN пе­ре­се­ка­ет пря­мую BC;

2)  пря­мая MN пе­ре­се­ка­ет плос­кость CAA1;

3)  пря­мая NK па­рал­лель­на плос­ко­сти ABC;

4)  пря­мая MN пе­ре­се­ка­ет пря­мую AB;

5)  пря­мая MK пе­ре­се­ка­ет пря­мую AB;

6)  пря­мая NK лежит в плос­ко­сти AA1B1.

 

Ответ за­пи­ши­те циф­ра­ми (по­ря­док за­пи­си цифр не имеет зна­че­ния). На­при­мер, 125.


Ответ:

14
Задание № 44
i

Дана ариф­ме­ти­че­ская про­грес­сия −48; −40; −32; ... . Для на­ча­ла каж­до­го из пред­ло­же­ний А−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

На­ча­ло пред­ло­же­ния

A)  Раз­ность этой про­грес­сии равна ...

Б)  Чет­вер­тый член этой про­грес­сии равен ...

В)  Сумма шести пер­вых чле­нов этой про­грес­сии равна ...

Окон­ча­ние пред­ло­же­ния

1)  −24

2)  0

3)  8

4)  −160

5)  −8

6)  −168

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер, А1Б1В4.


Ответ:

15
Задание № 45
i

В пря­мо­уголь­ном тре­уголь­ни­ке ACB  левая круг­лая скоб­ка \angle ACB = 90 гра­ду­сов пра­вая круг­лая скоб­ка CH и CK  — вы­со­та и ме­ди­а­на со­от­вет­ствен­но, про­ве­ден­ные к ги­по­те­ну­зе (см. рис.). Най­ди­те пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка ACB, если CK  =  8,  синус \angle CKH = дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби .


Ответ:

16
Задание № 46
i

Най­ди­те зна­че­ние вы­ра­же­ния  15 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та тан­генс дробь: чис­ли­тель: 8 Пи , зна­ме­на­тель: 3 конец дроби .


Ответ:

17
Задание № 47
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: левая круг­лая скоб­ка 1 плюс a в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 7 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка конец дроби при a  =  36.


Ответ:

18
Задание № 48
i

Через элек­трон­ный сер­вис Маша ку­пи­ла билет на кон­церт и за­пла­ти­ла 72 руб. В эту сумму вхо­дит сто­и­мость би­ле­та и сер­вис­ный сбор 4 руб. За не­де­лю до кон­цер­та Маша ре­ши­ла вер­нуть билет. По пра­ви­лам ор­га­ни­за­то­ра кон­цер­та ей вер­нут не менее 75% сто­и­мо­сти би­ле­та. Какую наи­боль­шую сумму (в руб­лях) может по­те­рять Маша, вер­нув билет?


Ответ:

19
Задание № 49
i

Зна­че­ние вы­ра­же­ния  4 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка 7 минус x_0 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка , где x0  — ко­рень урав­не­ния  3 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни x =45 ко­рень из: на­ча­ло ар­гу­мен­та: 225 в сте­пе­ни левая круг­лая скоб­ка 3 x плюс 11 конец ар­гу­мен­та пра­вая круг­лая скоб­ка , равно ... .


Ответ:

20
Задание № 50
i

Длины сто­рон па­рал­ле­ло­грам­ма от­но­сят­ся как 2 : 3, а вы­со­та, про­ве­ден­ная к боль­шей сто­ро­не, равна 6. Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та умно­жить на S, где S  — пло­щадь па­рал­ле­ло­грам­ма, если один из углов па­рал­ле­ло­грам­ма равен 120°.


Ответ:

21
Задание № 51
i

Най­ди­те про­из­ве­де­ние точек ми­ни­му­ма функ­ции  f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: x в сте­пе­ни 4 , зна­ме­на­тель: 4 конец дроби плюс x в кубе минус 14 x в квад­ра­те .


Ответ:

22
Задание № 52
i

Най­ди­те зна­че­ние вы­ра­же­ние  дробь: чис­ли­тель: 48, зна­ме­на­тель: Пи конец дроби умно­жить на арк­ко­си­нус левая круг­лая скоб­ка синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка .


Ответ:

23
Задание № 53
i

В тре­уголь­ной пи­ра­ми­де SABC бо­ко­вое ребро SB пер­пен­ди­ку­ляр­но плос­ко­сти ос­но­ва­ния ABC. Через се­ре­ди­ны ребер AB и SA про­ве­де­на се­ку­щая плос­кость, па­рал­лель­ная ребру AC. Най­ди­те зна­че­ние вы­ра­же­ния 5 · S, где S  — пло­щадь се­че­ния пи­ра­ми­ды этой плос­ко­стью, если AC  =  32, SB  =  2.


Ответ:

24
Задание № 54
i

Най­ди­те про­из­ве­де­ние наи­мень­ше­го це­ло­го ре­ше­ния на ко­ли­че­ство всех на­ту­раль­ных ре­ше­ний си­сте­мы не­ра­венств

 си­сте­ма вы­ра­же­ний 146 минус x в квад­ра­те боль­ше 0,x в квад­ра­те минус 3x боль­ше 0. конец си­сте­мы .


Ответ:

25
Задание № 55
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 6 x в квад­ра­те минус 15 x плюс 7 конец ар­гу­мен­та =x минус 1. В ответ за­пи­ши­те по­лу­чен­ный ре­зуль­тат, уве­ли­чен­ный в 25 раз.


Ответ:

26
Задание № 56
i

В боль­шой круг шара впи­сан тре­уголь­ник, длина одной из сто­рон ко­то­ро­го равна 4, а про­ти­во­ле­жа­щий этой сто­ро­не угол равен 135°. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та умно­жить на V, зна­ме­на­тель: Пи конец дроби , где V  — объем шара.


Ответ:

27
Задание № 57
i

Най­ди­те (в гра­ду­сах) сумму раз­лич­ных кор­ней урав­не­ния  синус в квад­ра­те дробь: чис­ли­тель: 9 x, зна­ме­на­тель: 4 конец дроби минус ко­си­нус в квад­ра­те дробь: чис­ли­тель: 9 x, зна­ме­на­тель: 4 конец дроби =1 на про­ме­жут­ке [−235°; −35°].


Ответ:

28
Задание № 58
i

Най­ди­те про­из­ве­де­ние наи­боль­ше­го це­ло­го ре­ше­ния на ко­ли­че­ство всех на­ту­раль­ных ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию 4 в квад­ра­те левая круг­лая скоб­ка 27 минус x пра­вая круг­лая скоб­ка боль­ше или равно 2 умно­жить на ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка 27 минус x пра­вая круг­лая скоб­ка .


Ответ:

29
Задание № 59
i

При де­ле­нии не­ко­то­ро­го на­ту­раль­но­го дву­знач­но­го числа на сумму его цифр не­пол­ное част­ное равно 7, а оста­ток равен 6. Если цифры дан­но­го числа по­ме­нять ме­ста­ми и по­лу­чен­ное число раз­де­лить на сумму его цифр, то не­пол­ное част­ное будет равно 3, а оста­ток будет равен 5. Най­ди­те ис­ход­ное число.


Ответ:

30
Задание № 60
i

Ос­но­ва­ни­ем че­ты­рех­уголь­ной пи­ра­ми­ды яв­ля­ет­ся ромб, у ко­то­ро­го ко­си­нус угла равен  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби и длина сто­ро­ны равна 16. Все бо­ко­вые грани пи­ра­ми­ды на­кло­не­ны к плос­ко­сти ее ос­но­ва­ния под углом α, а вы­со­та пи­ра­ми­ды равна 24. Най­ди­те зна­че­ние вы­ра­же­ния 3 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та умно­жить на тан­генс альфа .


Ответ:
Завершить работу, свериться с ответами, увидеть решения.